## Finding tiling spaces in the most curious places. Supervisor: Ian F. Putnam

Dina Buric

November 13, 2019

Dina Buric Finding tiling spaces in the most curious places.

#### Outline

Motivation Some dynamical systems What we're after Results so far Constructing Markov partitions Finding factor maps that split References



- 2 Some dynamical systems
- 3 What we're after
- 4 Results so far
- 5 Constructing Markov partitions
- 6 Finding factor maps that split

### A partition of a 2-torus



### A partition of a 3-torus



## Substitution tiling systems, $(\Omega, \mathcal{P}, \omega)$

Prototiles,  $\mathcal{P} = \{p_1, p_2 \dots, p_n\}$ . Each  $p_i \subseteq \mathbb{R}^d$  is the closure of its interior.



A tile t is a translation of some prototile.

A substitution rule  $\omega(p_i)$  that inflates, possibly rotates and subdivides with translates of prototiles.



A partial tiling is a collection of tiles whose interiors are pairwise disjoint. A tiling is a partial tiling whose union is  $\mathbb{R}^d$ . The substitution can be iterated and extended to all tilings.

We define  $\Omega$  to be the set of tilings T such that if  $P \subseteq T$  then  $P \subseteq \omega^k(t)$  for some tile t.



## Forcing the border

### Definition

A tiling system  $(\Omega, \mathcal{P}, \omega)$  forces its border if there is a  $k \ge 1$  such that, if  $\mathcal{T}$  and  $\mathcal{T}'$  are two tilings containing a tile t, then the patches in  $\omega^k(\mathcal{T})$  and  $\omega^k(\mathcal{T}')$  consisting of all tiles which meet  $\omega^k(t)$  are identical.

### Fibonacci



Dina Buric Finding tiling spaces in the most curious places.









### $\omega^{u}$ : Does not force border ( $a \mapsto ba$ and $b \mapsto a$ )



Dina Buric Finding tiling spaces in the most curious places.

In 1995 Anderson and Putnam showed that if a aperiodic substitution tiling space forces its border then it is topologically conjugate to a solenoid.

Hyperbolic toral automorphism

Take  $\hat{A} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$ 

Define  $A : \mathbb{T}^2 \to \mathbb{T}^2$  as  $A([x]) = [\hat{A}x]$ . where  $\mathbb{T}^2 = \mathbb{R}^2/\mathbb{Z}^2$ .

A is a toral automorphism.



Eigenvalues : 
$$\gamma$$
 and  $-\gamma^{-1}$ , where  $\gamma = \frac{1+\sqrt{5}}{2} > 1$ .  
Eigenvectors:  $v_u = \begin{bmatrix} \gamma \\ 1 \end{bmatrix}$  and  $v_s = \begin{bmatrix} -\gamma^{-1} \\ 1 \end{bmatrix}$ .  
Notice  $\mathbb{R}^2 = E^u \oplus E^s$ 

Eigenvalues : 
$$\gamma$$
 and  $-\gamma^{-1}$ , where  $\gamma = \frac{1+\sqrt{5}}{2} > 1$ .  
Eigenvectors:  $v_u = \begin{bmatrix} \gamma \\ 1 \end{bmatrix}$  and  $v_s = \begin{bmatrix} -\gamma^{-1} \\ 1 \end{bmatrix}$ .

Notice 
$$\mathbb{R}^2 = E^u \oplus E^s$$

For general  $\hat{A}$  in  $GL_d(\mathbb{R})$  we define,

$$E^{s} = \{x \in \mathbb{R}^{d} \mid \|\hat{A}^{n}x\| \to 0, \ n \to +\infty\}$$
$$E^{u} = \{x \in \mathbb{R}^{d} \mid \|\hat{A}^{n}x\| \to 0, \ n \to -\infty\}$$

### Definition

We say a matrix  $\hat{A}$  is hyperbolic if  $\hat{A}$  is in  $GL_d(\mathbb{R})$  and,

$$\mathbb{R}^d = E^s \oplus E^u.$$

On a hyperbolic toral automorphism the global unstable and stable sets wrap around densely.



The local stable and unstable sets are given by moving a little bit along the eigendirections. Locally,  $\mathbb{T}^2$  can be viewed as  $\mathbb{R} \times \mathbb{R}$ .

Let f be a homeomorphism.

### Definition

# We say two points x, y in X are stably equivalent and write $x \stackrel{s}{\sim} y$ if

$$\lim_{n\to+\infty}d(f^n(x),f^n(y))=0$$

We let  $X^{s}(x)$ , the set of y with  $x \stackrel{s}{\sim} y$ .

Unstably equivalent points are defined analogously.

The HTA can be modeled using symbolic dynamics by way of Markov partitions by a finite-to-one factor map.

- Adler and Weiss 1967 for the case of dimension d = 2.
- Sinai 1968 any finite dimension d.
- Bowen 1970, for basic sets of Axiom A diffeomorphisms.



## Markov Property



## Tracking orbits



 $e_1$ .

Dina Buric Finding tiling spaces in the most curious places.

## Tracking orbits



## Tracking orbits



## Tracking orbits





## 2nd example-shifts of finite type

Let G be a finite directed graph which consists of a vertex set  $G^0$ , an edge set  $G^1$ , and two maps  $r, s : G^1 \to G^0$ . The source vertex of edge e is given by s(e) and the range vertex is given by r(e).

### Definition

We define

$$\Sigma_G = \{(x_n)_{n \in \mathbb{Z}} \mid x_n \in G^1, \ r(x_n) = s(x_{n+1}) \ \text{ for all } n \text{ in } \mathbb{Z}\}$$

With the left shift map  $\sigma: \Sigma_{\mathcal{G}} \to \Sigma_{\mathcal{G}}$ ,

$$\sigma(x)_n = x_{n+1}.$$

### Definition

A factor map  $\pi$ , has a splitting, if it is a composition of a u and s-bijective map.



### Definition

We say that  $\pi : (X, f) \to (Y, g)$  is s-bijective if, for any x in X, its restriction to  $X^{s}(x)$  is a bijection to  $Y^{s}(\pi(x))$ .

### Theorem

Let  $\pi : (X, f) \to (Y, g)$  be an s-bijective map. Then for every x in X, the map  $\pi : X^{s}(x, \epsilon) \to Y^{s}(\pi(x), \epsilon')$  is a local homeomorphism.

A *u*-bijective map is defined and characterized analogously.

Suppose we also have  $\mu_s$ , an *s*-bijective map and  $\rho_u$ , a *u*-bijective map such that,



Suppose we also have  $\mu_s$ , an *s*-bijective map and  $\rho_u$ , a *u*-bijective map such that,



What must the intermediary space look like locally? What is a candidate space?

## $(\Omega, \omega)$ is a Tiling space!





### Definition

A factor map  $\pi$ , has a splitting, if it is a composition of a u and s-bijective map.



Does the splitting always exist? Is there a necessary and sufficient condition for a given factor map,  $\pi$ , to have a splitting?

A splitting for the map  $\pi$  exists if the boundary around a periodic point looks something like this...



The stable boundaries around a periodic point (for the map A) should look the same in the  $E^u$  direction.

### Constructing Markov partitions

Let  $G_{\rm fib}$  be the following finite directed graph with labelling map,  $u: G_{\rm fib}^1 \to \mathbb{Z}^2.$ 

$$\nu(e_1) = (0,0)$$
  
 $\nu(e_3) = (0,0)$ 
  
 $\nu(e_3) = (0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,0)$ 
  
 $(0,$ 

Suppose we take  $x = \dots e_2 e_3 e_2 e_3 e_2 e_3 e_2 e_3 e_2 e_3 \dots$  from  $\sum_{G_{G_{12}}}$ Dina Buric Finding tiling spaces in the most curious places.











 $R_B^s + R_G^u$ ,  $R_G^s + R_G^u$ 





Dina Buric Finding tiling spaces in the most curious places.

# Our $G_{\rm fib}$ example does not satisfy the condition



# Idea for proof

Suppose the condition fails.



Choose x and y unstably equivalent and stably equivalent to a periodic point, where x has one preimage under  $\pi$  while y has two preimages under  $\pi$ . Contradicts properties of u and s-bijective maps. No splitting for the map  $\pi : \Sigma_{G_{\rm fib}} \to \mathbb{T}^2$  exists.

Does there exist another SFT for which the factor map splits?

Theorem (Putnam,2005)

Let (Y, g) be an irreducible Smale space. Then there exists a shift of finite type  $(\Sigma, \sigma)$ , another irreducible Smale space  $(\Omega, \omega)$ , and

 $\mu: (\Sigma, \sigma) \to (\Omega, \omega)$  $\rho: (\Omega, \omega) \to (Y, g)$ 

factor maps, such that  $\mu$  is s-bijective and  $\rho$  is u-bijective.

How do we find it, explicitely?

# The collared tiling system $(\Omega_1, \mathcal{P}_1, \omega_1)$ forces its border.



# Non-conjugate shifts of finite type

 $(\Sigma_{G_{\text{fib}}}, \sigma) \text{ (old)} (\Sigma_{G_{\text{fib1}}}, \sigma) \text{ (new)}$ 



# New Markov partition.



## From Anderson and Putnam 1998 and Wieler 2005.



A three dimensional example

Let 
$$\hat{B} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$
. The induced map  $B$  defines an HTA of  $\mathbb{T}^3$ .

Eigenvalues:  $\beta > 1$ ,  $\alpha, \overline{\alpha}$ , where  $\beta^3 - \beta^2 - \beta - 1 = 0$ .

Expanding line and contracting plane.

### The Markov partition is given by the following (viewed in $\mathbb{R}^3$ ).







Unstable (Tribonacci)

Stable (Rauzy)

$$AR_1^u = R_1^u \cup R_2^u - (1, 0, 0)^s$$
$$AR_2^u = R_1^u \cup R_3^u - (1, 0, 0)^s$$
$$AR_3^u = R_1^u$$

$$\begin{aligned} R_1^s &= AR_1^s \cup AR_2^s \cup AR_3^s \\ R_2^s &= AR_1^s + (1,0,0)^s \\ R_3^s &= AR_2^s + (1,0,0)^s \end{aligned}$$

# $R_1^s = AR_1^s \cup AR_2^s \cup AR_3^s$

Dina Buric Finding tiling spaces in the most curious places.

# Interior point Boundary point

### No splitting for the factor map exists.

Dina Buric Finding tiling spaces in the most curious places.



 $\begin{array}{ll} (\Omega_1, \omega_1) & \mbox{collared tribonacci substitution} \\ (\Omega', \omega') & \mbox{collared Rauzy substitution (tiling example 1)} \end{array}$ 

We know:

- Existence of splitting for  $\pi \implies$  condition on boundaries of MP.
- Forcing the border of  $(\Omega, \omega) \implies \exists$  a map  $\pi$  that splits.
- We have been working on an example of a factor map that splits, but the corresponding tiling system  $(\Omega, \omega)$  does not force its border.

Questions:

- Does the condition being satisfied imply the existence of a splitting?
- If we randomly label a graph of the SFT what sort of sets in  $\mathbb{R}^d$  are possible? Under which conditions?
- What does all of this have to do with lan's homology theory for Smale spaces?

Adler, R. L. and B. Weiss (1967). "Entropy, a complete metric invariant for automorphisms of the torus". In: Proceedings of the National Academy of Sciences 57.6, pp. 1573–1576. ISSN: 0027-8424. DOI: 10.1073/pnas.57.6.1573. eprint: https://www.pnas.org/content/57/6/1573.full.pdf. URL: https://www.pnas.org/content/57/6/1573. Anderson, Jared E. and Ian F. Putnam (1998). "Topological invariants for substitution tilings and their associated C<sup>\*</sup>-algebras<sup>"</sup>. In: Ergodic Theory Dynam. Systems 18.3, pp. 509–537. ISSN: 0143-3857. DOI: 10.1017/S0143385798100457. URL: http://dx.doi.org/10.1017/S0143385798100457. Bowen, Rufus (1970). "Markov partitions and minimal sets for Axiom A diffeomorphisms". In: Amer. J. Math. 92,

pp. 907-918. ISSN: 0002-9327. DOI: 10.2307/2373402. URL: https://doi.org/10.2307/2373402. Sinai, Ya. G. (1968). "Construction of Markov partitions". In:

Functional Analysis and Its Applications 2.3, pp. 245-253. ISSN: 1573-8485. DOI: 10.1007/BF01076126. URL: https://doi.org/10.1007/BF01076126.

Wieler, Susana (2005). "Symbolic and Geometric Representations of Unimodular Pisot Substitutions". MA thesis. University of Victoria.

### Thank you for your attention!