Finding tiling spaces in the most curious places. Supervisor: Ian F. Putnam

Dina Buric

November 13, 2019
(1) Motivation
(2) Some dynamical systems
(3) What we're after
(4) Results so far
(5) Constructing Markov partitions
(6) Finding factor maps that split

A partition of a 2-torus

Substitution tiling systems, $(\Omega, \mathcal{P}, \omega)$

Prototiles, $\mathcal{P}=\left\{p_{1}, p_{2} \ldots, p_{n}\right\}$. Each $p_{i} \subseteq \mathbb{R}^{d}$ is the closure of its interior.

A tile t is a translation of some prototile.

A substitution rule $\omega\left(p_{i}\right)$ that inflates, possibly rotates and subdivides with translates of prototiles.

A partial tiling is a collection of tiles whose interiors are pairwise disjoint. A tiling is a partial tiling whose union is \mathbb{R}^{d}.
The substitution can be iterated and extended to all tilings.

We define Ω to be the set of tilings T such that if $P \subseteq T$ then $P \subseteq \omega^{k}(t)$ for some tile t.

Forcing the border

Definition

A tiling system $(\Omega, \mathcal{P}, \omega)$ forces its border if there is a $k \geq 1$ such that, if T and T^{\prime} are two tilings containing a tile t, then the patches in $\omega^{k}(T)$ and $\omega^{k}\left(T^{\prime}\right)$ consisting of all tiles which meet $\omega^{k}(t)$ are identical.

Fibonacci

b.

bgb.
gbbgb
$\omega^{u}:$ Does not force border $(a \mapsto b a$ and $b \mapsto a)$
b.

bgb.
gbbgb.

Extend on the right by b $\ldots . \operatorname{gbgbb}$ g b. b ...

Extend on the right by g
... babaa g b. g...
$\omega^{u}:$ Does not force border $(a \mapsto b a$ and $b \mapsto a)$
b.

Extend on the right by b $\ldots . . g b g b b$ g b...

Extend on the right by g
... babaa g b. g...
$\omega^{u} \quad \ldots g b g b$ bgb. g $b \ldots$
$\ldots . \operatorname{lobg} \mathrm{b} g b . \mathrm{b} .$.
ω^{u} : Does not force border $(a \mapsto b a$ and $b \mapsto a)$

Extend on the right by b
$\ldots . . g b g b b \mathrm{~g} b$. b
$\omega^{u} \quad \ldots g b g b$ bgb. g $b \ldots$
$\left(\omega^{u}\right)^{2} \quad \ldots g b g$ b $b g b$. $\mathrm{b} g b \ldots$
bgb.
gbbgb.

Extend on the right by g
... babaa g b. g...
$\ldots . \log g \mathrm{~b} g b$ b
$\ldots g b g$ bbgb. b...
$\omega^{u}:$ Does not force border $(a \mapsto b a$ and $b \mapsto a)$

Extend on the right by b
$\ldots g b g b b \mathrm{~g} b . \mathrm{b}$
gb.

bgb.

gbbgb.

Extend on the right by g
... babaa g b. g...
$\ldots . \operatorname{lng} b \mathrm{~b} g b$.
$\ldots g b g$ bbgb. $\mathrm{g} b \ldots$
$\ldots g$ b $g b b g b$. $\mathrm{b} g b \ldots$

In 1995 Anderson and Putnam showed that if a aperiodic substitution tiling space forces its border then it is topologically conjugate to a solenoid.

Hyperbolic toral automorphism

Take $\hat{A}=\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]$
Define $A: \mathbb{T}^{2} \rightarrow \mathbb{T}^{2}$ as $A([x])=[\hat{A} x]$. where $\mathbb{T}^{2}=\mathbb{R}^{2} / \mathbb{Z}^{2}$.
A is a toral automorphism.

Eigenvalues: γ and $-\gamma^{-1}$, where $\gamma=\frac{1+\sqrt{5}}{2}>1$.
Eigenvectors: $v_{u}=\left[\begin{array}{l}\gamma \\ 1\end{array}\right]$ and $v_{s}=\left[\begin{array}{c}-\gamma^{-1} \\ 1\end{array}\right]$.
Notice $\mathbb{R}^{2}=E^{u} \oplus E^{s}$

Eigenvalues: γ and $-\gamma^{-1}$, where $\gamma=\frac{1+\sqrt{5}}{2}>1$.
Eigenvectors: $v_{u}=\left[\begin{array}{l}\gamma \\ 1\end{array}\right]$ and $v_{s}=\left[\begin{array}{c}-\gamma^{-1} \\ 1\end{array}\right]$.
Notice $\mathbb{R}^{2}=E^{u} \oplus E^{s}$
For general \hat{A} in $G L_{d}(\mathbb{R})$ we define,

$$
\begin{aligned}
& E^{s}=\left\{x \in \mathbb{R}^{d} \mid\left\|\hat{A}^{n} x\right\| \rightarrow 0, n \rightarrow+\infty\right\} \\
& E^{u}=\left\{x \in \mathbb{R}^{d} \mid\left\|\hat{A}^{n} x\right\| \rightarrow 0, n \rightarrow-\infty\right\}
\end{aligned}
$$

Definition

We say a matrix \hat{A} is hyperbolic if \hat{A} is in $G L_{d}(\mathbb{R})$ and,

$$
\mathbb{R}^{d}=E^{s} \oplus E^{u}
$$

On a hyperbolic toral automorphism the global unstable and stable sets wrap around densely.

The local stable and unstable sets are given by moving a little bit along the eigendirections. Locally, \mathbb{T}^{2} can be viewed as $\mathbb{R} \times \mathbb{R}$.

Let f be a homeomorphism.

Definition

We say two points x, y in X are stably equivalent and write $x \stackrel{s}{\sim} y$ if

$$
\lim _{n \rightarrow+\infty} d\left(f^{n}(x), f^{n}(y)\right)=0
$$

We let $X^{s}(x)$, the set of y with $x \stackrel{s}{\sim} y$.
Unstably equivalent points are defined analogously.

The HTA can be modeled using symbolic dynamics by way of Markov partitions by a finite-to-one factor map.

- Adler and Weiss 1967 for the case of dimension $d=2$.
- Sinai 1968 any finite dimension d.
- Bowen 1970, for basic sets of Axiom A diffeomorphisms.

Markov Property

Good

Bad covering

Bad covering

Tracking orbits

Tracking orbits

Tracking orbits

Tracking orbits

2nd example-shifts of finite type

Let G be a finite directed graph which consists of a vertex set G^{0}, an edge set G^{1}, and two maps $r, s: G^{1} \rightarrow G^{0}$. The source vertex of edge e is given by $s(e)$ and the range vertex is given by $r(e)$.

Definition

We define

$$
\Sigma_{G}=\left\{\left(x_{n}\right)_{n \in \mathbb{Z}} \mid x_{n} \in G^{1}, r\left(x_{n}\right)=s\left(x_{n+1}\right) \text { for all } n \text { in } \mathbb{Z}\right\}
$$

With the left shift map $\sigma: \Sigma_{G} \rightarrow \Sigma_{G}$,

$$
\sigma(x)_{n}=x_{n+1}
$$

Definition

A factor map π, has a splitting, if it is a composition of a u and s-bijective map.

Definition

We say that $\pi:(X, f) \rightarrow(Y, g)$ is s-bijective if, for any x in X, its restriction to $X^{s}(x)$ is a bijection to $Y^{s}(\pi(x))$.

Theorem

Let $\pi:(X, f) \rightarrow(Y, g)$ be an s-bijective map. Then for every x in X, the map $\pi: X^{s}(x, \epsilon) \rightarrow Y^{s}\left(\pi(x), \epsilon^{\prime}\right)$ is a local homeomorphism.

A u-bijective map is defined and characterized analogously.

Suppose we also have μ_{s}, an s-bijective map and ρ_{u}, a u-bijective map such that,

Suppose we also have μ_{s}, an s-bijective map and ρ_{u}, a u-bijective map such that,

What must the intermediary space look like locally?
What is a candidate space?

(Ω, ω) is a Tiling space!

Definition

A factor map π, has a splitting, if it is a composition of a u and s-bijective map.

Does the splitting always exist? Is there a necessary and sufficient condition for a given factor map, π, to have a splitting?

A splitting for the map π exists if the boundary around a periodic point looks something like this...

The stable boundaries around a periodic point (for the map A) should look the same in the E^{u} direction.

Constructing Markov partitions

Let $G_{\text {fib }}$ be the following finite directed graph with labelling map,

$$
\nu: G_{\text {fib }}^{1} \rightarrow \mathbb{Z}^{2} .
$$

Suppose we take $x=\ldots e_{2} e_{3} e_{2} e_{3} e_{2} e_{3} . e_{2} e_{3} e_{2} e_{3} e_{2} e_{3} \ldots$ from $\Sigma_{G c}$.

$$
\pi^{s}(x)=\sum_{n \leq 0} A^{-n} \nu\left(x_{n}\right)^{s}=\lim _{k \rightarrow \infty}\left(\sum_{n=0}^{-k} A^{-n} \nu\left(x_{n}\right)\right)^{s}
$$

$$
\begin{aligned}
R_{B}^{s} & =\pi^{s}\left\{x \in \Sigma_{G_{\mathrm{fib}}} \mid r\left(x_{0}\right)=B\right\} \\
& =\text { blue set } \\
R_{G}^{s} & =\pi^{s}\left\{x \in \Sigma_{G_{\mathrm{fib}}} \mid r\left(x_{0}\right)=G\right\} \\
& =\text { green set }
\end{aligned}
$$

$$
\begin{aligned}
R_{B}^{u} & =\pi^{u}\left\{x \in \Sigma_{G_{\text {fib }}} \mid r\left(x_{0}\right)=B\right\} \\
& =\text { blue set } \\
R_{G}^{u} & =\pi^{u}\left\{x \in \Sigma_{G_{\text {fib }}} \mid r\left(x_{0}\right)=G\right\} \\
& =\text { green set }
\end{aligned}
$$

\mathcal{R}
$q: \mathbb{R}^{2} \rightarrow \mathbb{T}^{2} \bmod \mathbb{Z}^{2}$ map.

$q(\mathcal{R})$

Our $G_{\text {fib }}$ example does not satisfy the condition

Idea for proof

Suppose the condition fails.

Choose x and y unstably equivalent and stably equivalent to a periodic point, where x has one preimage under π while y has two preimages under π. Contradicts properties of u and s-bijective maps. No splitting for the map $\pi: \Sigma_{G_{\text {fib }}} \rightarrow \mathbb{T}^{2}$ exists.

Does there exist another SFT for which the factor map splits?

Theorem (Putnam, 2005)

Let (Y, g) be an irreducible Smale space. Then there exists a shift of finite type (Σ, σ), another irreducible Smale space (Ω, ω), and

$$
\begin{gathered}
\mu:(\Sigma, \sigma) \rightarrow(\Omega, \omega) \\
\rho:(\Omega, \omega) \rightarrow(Y, g)
\end{gathered}
$$

factor maps, such that μ is s-bijective and ρ is u-bijective.
How do we find it, explicitely?

The collared tiling system $\left(\Omega_{1}, \mathcal{P}_{1}, \omega_{1}\right)$ forces its border.

Non-conjugate shifts of finite type

$$
\left(\Sigma_{G_{\text {fib }}}, \sigma\right)(\mathrm{old})
$$

$$
\left(\Sigma_{G_{\text {fib1 }}}, \sigma\right) \text { (new) }
$$

New Markov partition.

From Anderson and Putnam 1998 and Wieler 2005.

A three dimensional example

Let $\hat{B}=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right]$. The induced map B defines an HTA of \mathbb{T}^{3}.
Eigenvalues: $\beta>1, \alpha, \bar{\alpha}$, where $\beta^{3}-\beta^{2}-\beta-1=0$.
Expanding line and contracting plane.

The Markov partition is given by the following (viewed in \mathbb{R}^{3}).

Unstable (Tribonacci)

$$
\begin{array}{ll}
A R_{1}^{u}=R_{1}^{u} \cup R_{2}^{u}-(1,0,0)^{s} & R_{1}^{s}=A R_{1}^{s} \cup A R_{2}^{s} \cup A R_{3}^{s} \\
A R_{2}^{u}=R_{1}^{u} \cup R_{3}^{u}-(1,0,0)^{s} & R_{2}^{s}=A R_{1}^{s}+(1,0,0)^{s} \\
A R_{3}^{u}=R_{1}^{u} & R_{3}^{s}=A R_{2}^{s}+(1,0,0)^{s}
\end{array}
$$

$R_{1}^{s}=A R_{1}^{s} \cup A R_{2}^{s} \cup A R_{3}^{s}$

$\left(\Omega_{1}, \omega_{1}\right)$ collared tribonacci substitution $\left(\Omega^{\prime}, \omega^{\prime}\right)$ collared Rauzy substitution (tiling example 1)

We know:

- Existence of splitting for $\pi \Longrightarrow$ condition on boundaries of MP.
- Forcing the border of $(\Omega, \omega) \Longrightarrow \exists$ a map π that splits.
- We have been working on an example of a factor map that splits, but the correspdonding tiling system (Ω, ω) does not force its border.
Questions:
- Does the condition being satisfied imply the existence of a splitting?
- If we randomly label a graph of the SFT what sort of sets in \mathbb{R}^{d} are possible? Under which conditions?
- What does all of this have to do with lan's homology theory for Smale spaces?

Adler, R. L. and B. Weiss (1967). "Entropy, a complete metric invariant for automorphisms of the torus". In: Proceedings of the National Academy of Sciences 57.6, pp. 1573-1576. ISSN: 0027-8424. DOI: 10.1073/pnas.57.6.1573. eprint: https://www.pnas.org/content/57/6/1573.full.pdf. URL: https://www.pnas.org/content/57/6/1573.

- Anderson, Jared E. and Ian F. Putnam (1998). "Topological invariants for substitution tilings and their associated C*-algebras". In: Ergodic Theory Dynam. Systems 18.3, pp. 509-537. ISSN: 0143-3857. DOI:
10.1017/S0143385798100457. URL:
http://dx.doi.org/10.1017/S0143385798100457.
目 Bowen, Rufus (1970). "Markov partitions and minimal sets for Axiom A diffeomorphisms". In: Amer. J. Math. 92,
pp. 907-918. ISSN: 0002-9327. DOI: 10.2307/2373402. URL: https://doi.org/10.2307/2373402.
國 Sinai, Ya. G. (1968). "Construction of Markov partitions". In:
Functional Analysis and Its Applications 2.3, pp. 245-253. ISSN:
1573-8485. DOI: 10.1007/BF01076126. URL:
https://doi.org/10.1007/BF01076126.
围 Wieler, Susana (2005). "Symbolic and Geometric Representations of Unimodular Pisot Substitutions". MA thesis. University of Victoria.

Thank you for your attention!

