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A partition of a 2-torus A partition of a 3-torus
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Substitution tiling systems, (Ω,P , ω)

Prototiles, P = {p1, p2 . . . , pn}. Each pi ⊆ Rd is the closure of its

interior.

p1 p2 p3

A tile t is a translation of some prototile.
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A substitution rule ω(pi ) that inflates, possibly rotates and
subdivides with translates of prototiles.

p1 p2 p3

ω(p1) ω(p2) ω(p3)
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A partial tiling is a collection of tiles whose interiors are pairwise
disjoint. A tiling is a partial tiling whose union is Rd .
The substitution can be iterated and extended to all tilings.
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We define Ω to be the set of tilings T such that if P ⊆ T then
P ⊆ ωk(t) for some tile t.
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Forcing the border

Definition

A tiling system (Ω,P, ω) forces its border if there is a k ≥ 1 such
that, if T and T ′ are two tilings containing a tile t, then the
patches in ωk(T ) and ωk(T ′) consisting of all tiles which meet
ωk(t) are identical.
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Fibonacci

ωu : b. 7→ gb.

ωu : g . 7→ b.
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ωu: Does not force border (a 7→ ba and b 7→ a)

Extend on the right by b Extend on the right by g
. . . gbgbb g b. b . . . . . . babaa g b. g . . .

ωu . . . gbgb b gb. g b . . . . . . bgbg b gb. b . . .
(ωu)2 . . . gbg b bgb. b gb . . . . . . gbg b bgb. g b . . .
(ωu)3 . . . g b gbbgb. g bgb . . . . . . g b gbbgb. b gb . . .
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In 1995 Anderson and Putnam showed that if a aperiodic
substitution tiling space forces its border then it is topologically
conjugate to a solenoid.
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Hyperbolic toral automorphism

Take Â =

[
1 1
1 0

]
Define A : T2 → T2 as A([x ]) = [Âx ]. where T2 = R2/Z2.

A is a toral automorphism.
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Eigenvalues : γ and −γ−1, where γ = 1+
√

5
2 > 1.

Eigenvectors: vu =

[
γ
1

]
and vs =

[
−γ−1

1

]
.

Notice R2 = E u ⊕ E s

For general Â in GLd(R) we define,

E s = {x ∈ Rd | ‖Ânx‖ → 0, n→ +∞}
E u = {x ∈ Rd | ‖Ânx‖ → 0, n→ −∞}

Definition

We say a matrix Â is hyperbolic if Â is in GLd(R) and,

Rd = E s ⊕ E u.
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On a hyperbolic toral automorphism the global unstable and stable
sets wrap around densely.

The local stable and unstable sets are given by moving a little bit
along the eigendirections. Locally, T2 can be viewed as R× R.

Dina Buric Finding tiling spaces in the most curious places.
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Let f be a homeomorphism.

Definition

We say two points x , y in X are stably equivalent and write x
s∼ y

if
lim

n→+∞
d(f n(x), f n(y)) = 0

We let X s(x), the set of y with x
s∼ y .

Unstably equivalent points are defined analogously.
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The HTA can be modeled using symbolic dynamics by way of
Markov partitions by a finite-to-one factor map.

Adler and Weiss 1967 for the case of dimension d = 2.

Sinai 1968 any finite dimension d .

Bowen 1970, for basic sets of Axiom A diffeomorphisms.
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Markov Property

f −1(R ′)

R

f −1(R ′)

R f −1(R ′)

R

Good Bad covering Bad covering
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Tracking orbits

A−2(x) A−1(x) A0(x) A1(x) A2(x)

? e3

e1.

e2 e4

R B G

e5

e1 e2

e4e3
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2nd example-shifts of finite type

Let G be a finite directed graph which consists of a vertex set G 0,
an edge set G 1, and two maps r , s : G 1 → G 0. The source vertex
of edge e is given by s(e) and the range vertex is given by r(e).

Definition

We define

ΣG = {(xn)n∈Z | xn ∈ G 1, r(xn) = s(xn+1) for all n in Z}

With the left shift map σ : ΣG → ΣG ,

σ(x)n = xn+1.

Dina Buric Finding tiling spaces in the most curious places.
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Definition

A factor map π, has a splitting, if it is a composition of a u and
s-bijective map.

(ΣG , σ)

(Ω, ω)

(Td ,A)

µs

π

ρu

Dina Buric Finding tiling spaces in the most curious places.
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Definition

We say that π : (X , f )→ (Y , g) is s-bijective if, for any x in X , its
restriction to X s(x) is a bijection to Y s(π(x)).

Theorem

Let π : (X , f )→ (Y , g) be an s-bijective map. Then for every x in
X , the map π : X s(x , ε)→ Y s(π(x), ε′) is a local homeomorphism.

A u-bijective map is defined and characterized analogously.

Dina Buric Finding tiling spaces in the most curious places.
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Suppose we also have µs , an s-bijective map and ρu, a u-bijective
map such that,

(ΣG , σ)

(Ω, ω)

(Td ,A)

µs

π

ρu

Cantor× Cantor

???

Rm × Rn ∼= E s × Eu

µs

π

ρu

What must the intermediary space look like locally?
What is a candidate space?

Dina Buric Finding tiling spaces in the most curious places.
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(Ω, ω) is a Tiling space!

(ΣGfib1
, σ)

(Ω1, ω1) (Ω′, ω′)

(T2,A)

π

µs

µu

ρu
ρs

Dina Buric Finding tiling spaces in the most curious places.
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Definition

A factor map π, has a splitting, if it is a composition of a u and
s-bijective map.

(ΣG , σ)

(Ω, ω)

(Td ,A)

µs

π

ρu

Does the splitting always exist? Is there a necessary and
sufficient condition for a given factor map, π, to have a
splitting?

Dina Buric Finding tiling spaces in the most curious places.
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A splitting for the map π exists if the boundary around a periodic
point looks something like this...

R1
R2

R3

x + E s

R4

”jfl” x

”jlf”

x + y

”gjh”

x + y

Eu

The stable boundaries around a periodic point (for the map A)
should look the same in the Eu direction.

Dina Buric Finding tiling spaces in the most curious places.
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Constructing Markov partitions

Let Gfib be the following finite directed graph with labelling map,

ν : G 1
fib → Z2.

B Gν(e1) = (0, 0)

ν(e2) = (1, 0)

ν(e3) = (0, 0)

Suppose we take x = . . . e2e3e2e3e2e3.e2e3e2e3e2e3 . . . from ΣGfib
.

Dina Buric Finding tiling spaces in the most curious places.
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πs(x) =
∑
n≤0

A−nν(xn)s = lim
k→∞

( −k∑
n=0

A−nν(xn)

)s

k=1 k=3 k=5

A(1, 0) + A3(1, 0) + A5(1, 0) . . .

Dina Buric Finding tiling spaces in the most curious places.
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Rs
B = πs{x ∈ ΣGfib

| r(x0) = B}
= blue set

Rs
G = πs{x ∈ ΣGfib

| r(x0) = G}
= green set

Dina Buric Finding tiling spaces in the most curious places.
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Ru
B = πu{x ∈ ΣGfib

| r(x0) = B}
= blue set

Ru
G = πu{x ∈ ΣGfib

| r(x0) = G}
= green set
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Rs
B ,R

s
G ,R

u
B ,R

u
G Rs

B + Ru
B , Rs

G + Ru
G .
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Rs
B + Ru

G , Rs
G + Ru

G q : R2 → T2 mod Z2 map.

R q(R)
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Our Gfib example does not satisfy the condition

∂sR

Dina Buric Finding tiling spaces in the most curious places.
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Idea for proof

Suppose the condition fails.

Choose x and y unstably equivalent and stably equivalent to a
periodic point, where x has one preimage under π while y has two
preimages under π. Contradicts properties of u and s-bijective
maps. No splitting for the map π : ΣGfib

→ T2 exists.
Dina Buric Finding tiling spaces in the most curious places.



Outline
Motivation

Some dynamical systems
What we’re after

Results so far
Constructing Markov partitions

Finding factor maps that split
References

Does there exist another SFT for which the factor map splits?

Theorem (Putnam,2005)

Let (Y , g) be an irreducible Smale space. Then there exists a shift
of finite type (Σ, σ), another irreducible Smale space (Ω, ω), and

µ : (Σ, σ)→ (Ω, ω)

ρ : (Ω, ω)→ (Y , g)

factor maps, such that µ is s-bijective and ρ is u-bijective.

How do we find it, explicitely?

Dina Buric Finding tiling spaces in the most curious places.
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The collared tiling system (Ω1,P1, ω1) forces its border.

Original prototiles Collared prototiles

0

Dina Buric Finding tiling spaces in the most curious places.
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Non-conjugate shifts of finite type

(ΣGfib
, σ) (old) (ΣGfib1

, σ) (new)

B G

B

R G

Dina Buric Finding tiling spaces in the most curious places.
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New Markov partition.

=⇒
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From Anderson and Putnam 1998 and Wieler 2005.

(ΣGfib1
, σ)

(Ω1, ω1) (Ω′, ω′)

(T2,A)

π

µs

µu

ρu
ρs

Dina Buric Finding tiling spaces in the most curious places.



Outline
Motivation

Some dynamical systems
What we’re after

Results so far
Constructing Markov partitions

Finding factor maps that split
References

A three dimensional example

Let B̂ =

1 1 1
1 0 0
0 1 0

. The induced map B defines an HTA of T3.

Eigenvalues: β > 1, α, α, where β3 − β2 − β − 1 = 0.

Expanding line and contracting plane.

Dina Buric Finding tiling spaces in the most curious places.
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The Markov partition is given by the following (viewed in R3).

Dina Buric Finding tiling spaces in the most curious places.
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1

2 3

(0, 0, 0)

(1, 0, 0)

(0, 0, 0)

(0, 0, 0)

(1, 0, 0)

Unstable (Tribonacci) Stable (Rauzy)

ARu
1 = Ru

1 ∪ Ru
2 − (1, 0, 0)s

ARu
2 = Ru

1 ∪ Ru
3 − (1, 0, 0)s

ARu
3 = Ru

1

Rs
1 = ARs

1 ∪ ARs
2 ∪ ARs

3

Rs
2 = ARs

1 + (1, 0, 0)s

Rs
3 = ARs

2 + (1, 0, 0)s

Dina Buric Finding tiling spaces in the most curious places.
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R s
1 = AR s

1 ∪ AR s
2 ∪ AR s

3

Dina Buric Finding tiling spaces in the most curious places.
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Interior point Boundary point

No splitting for the factor map exists.

Dina Buric Finding tiling spaces in the most curious places.
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(ΣGnew , σ)

(Ω1, ω1) (Ω′, ω′)

(T2,A)

πnew

µs

µu

ρu
ρs

(Ω1, ω1) collared tribonacci substitution

(Ω′, ω′) collared Rauzy substitution (tiling example 1)

Dina Buric Finding tiling spaces in the most curious places.
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We know:

Existence of splitting for π =⇒ condition on boundaries of
MP.

Forcing the border of (Ω, ω) =⇒ ∃ a map π that splits.

We have been working on an example of a factor map that
splits, but the correspdonding tiling system (Ω, ω) does not
force its border.

Questions:

Does the condition being satisfied imply the existence of a
splitting?

If we randomly label a graph of the SFT what sort of sets in
Rd are possible? Under which conditions?

What does all of this have to do with Ian’s homology theory
for Smale spaces?

Dina Buric Finding tiling spaces in the most curious places.
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